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‒ OBJECTIVES:

Advance NASA’s enhanced communication goals by: 

‒ Demonstrating optical communications from deep space (> 2 AU) 

to validate:

‒ Link acquisition and laser pointing control

‒ High photon efficiency signaling

See DSOC presentation by 

Abhijit Biswas

Tuesday Jan 30, 11:10-11:30 AM

Room 158

(Paper 10524-30)

Pre-Decisional Information -- For 

Planning and Discussion Purposes Only
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• Uplink beacon provides reference pointing information without increasing mass of 

flight transceiver. 

• Uplink signal position is estimated in order to 

– Adjust flight terminal platform attitude and calculate point-ahead angle for downlink 

transmission

– Acquire and demodulate uplink data 

• A single detector array reduces alignment errors and optical losses

– Used to estimate location of dim laser beacon to point transmit beam to Earth ground receiver 

– Tracks angle of the transmit beam to confirm the point-ahead angle

– Photon counting array has best combination of sensitivity and bandwidth

• Signal processing needed for simultaneous spatial acquisition, tracking, parameter 

estimation and data demodulation
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Beacon Centroiding and Downlink Pointing

• Uplink beacon tracking error translates directly to downlink pointing 

error

• <1 µrad beacon centroiding accuracy needed

• Example case: Spacecraft at 2.7 AU

Earth FOV ~32 µrad

beacon

pixel FOV ~8 µrad
• Beacon irradiance in pW/m2

• Earth radiance dominates 

beacon flux

• Beacon centroid biased 

towards Earth centroid 

• We need subpixel beacon 

centroid accuracy, using 

currently available photon-

counting cameras
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Uplink Signal Format

• The DSOC uplink beacon uses a 2-PPM with 2 intersymbol guard time 

(ISGT) slots modulation

• This scheme provides a low rate command channel

• 50% average duty cycle beacon is optimal for signal estimation

• Background subtraction is implemented using a pair of up-down counters 

offset by command channel slot width

Symbol'0' Symbol'1'

Slot'0' Slot'1' Slot'2' Slot'3' Slot'0' Slot'1' Slot'2' Slot'3'

2'Guard'slot'
(always'empty)'

2'Guard'slot'
(always'empty)'

Laser'on'in'slot'0'=>'
Symbol'value'is'0'

Laser'on'in'slot'1'=>'
Symbol'value'is'1'

Time'

Time averaged => 

square wave

Tslot = 65.536 μs
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• The modified square law (MSQ) statistic is calculated for each pixel on the 

array using N symbols (N=64 for 60Hz update rate).

• The MSQ statistic, W, does not depend on the background level and is 

proportional to the modulated signal level squared.

• The centroid estimate is calculated using the MSQ statistic in a small 

subwindow (e.g., 2x2 or 3x3 pixels).

Background subtraction

Symbol'0' Symbol'1'

Slot'0' Slot'1' Slot'2' Slot'3' Slot'0' Slot'1' Slot'2' Slot'3'

Time'

CW'background'(dark'counts,'stray'light,'Earth'etc.'In
te
n
si
ty
'[
a.
u
.]
'

Uplink'beacon'

Timing'offset'

X1' X2' X3'X0'
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• Blocking limits maximum detectable counts, and comprises two effects

• Detector dead time – After a photon detection event the detector is held in an off-state 

for a set amount of time to limit afterpulsing

• ROIC frame rate/single photon detection limit – at most one count per frame recorded

• The dead/wait time on the PCC ROIC is discretized in units of quarter ROIC frames. 

• The nominal wait time is 5 quarter frames:

• Blocking manifest itself as a nonlinear response at high count rates and is exacerbated by 

pulsed or modulated signals 

Detector/ROIC Blocking Model

ROIC%Frame%+me%

Time%

Quarter%
frame%

Time%

Detector%dead%+me%

Poisson%photon%arrival%process%

ROIC%output%(Wait%+me%5%quarter%frames)%TROIC frame = 2.048 μs
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• Using straight forward statistics, the effect of blocking can be compensated for.

• The most simple form is:

• For the DSOC PCC+ROIC setup, this translates to:

where x is the number of observed counts in n quarter frames.

• However, due to the modulated signal, the blocking compensation has to be done on a 

slot-by-slot basis (i.e., on the readout FPGA). Thus, the blocking compensation is 

implemented using a lookup table using the correction:

where xcorr is the corrected number of counts in one slot and nslot is the number of quarter 

frames in a slot (nslot = 128).

Blocking compensation

Symbol'0' Symbol'1'

Slot'0' Slot'1' Slot'2' Slot'3' Slot'0' Slot'1' Slot'2' Slot'3'

Time'

CW'background'(dark'counts,'stray'light,'Earth'etc.'In
te
n
si
ty
'[
a.
u
.]
'

Uplink'beacon'

Timing'offset'

X1' X2' X3'X0'
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• The blocking compensation scheme assumes 

the count rate is constant over the integration 

time (one slot). 

• This assumption is reasonable in tracking 

mode where the timing offset is actively 

minimized

• In acquisition mode the timing offset is 

unknown (1/2 slot worst case)

• Blocking compensation linearizes the detector 

response

• This helps the underlying algorithms (e.g., 

the MSQ statistic) which were derived 

assuming a linear response 

• It does not “create” signal where there was 

none. I.e., the noise is also amplified.

• The limited integration time and restriction to 

integer numbers causes a small overestimation 

of the corrected counts.

Blocking compensation cont.

Symbol'0' Symbol'1'

Slot'0' Slot'1' Slot'2' Slot'3' Slot'0' Slot'1' Slot'2' Slot'3'

Time'

CW'background'(dark'counts,'stray'light,'Earth'etc.'In
te
n
si
ty
'[
a.
u
.]
'

Uplink'beacon'

Timing'offset'

X1' X2' X3'X0'
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Monte Carlo simulations the impact of blocking on the MSQ statistic under relevant uplink and 

background count rates

Impact of Blocking on MSQ statistic
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• Contrary to previous assumptions, blocking compensation is important, even in the 

absence of background.

No timing offset: blocking 

compensation works well

Worst case timing offset: As 

expected blocking 

compensation is not ideal, 

but meets Acquisition mode 

requirements
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Centroiding performance was tested using two models:

• A high fidelity Monte Carlo code, simulating the detector array, ROIC, and readout FPGA in 

software

• A Photon Counting Camera test bed for detector an algorithm testing under realistic 

conditions

• Including separate 1064nm uplink and 1550nm downlink sources, variable background 

models

• PCC mounted on motorized precision XY translation stage for accurate (relative) 

movements.

Performance testing
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• A standardized test case was constructed and used as the baseline for testing.

• This test case represent the worst case conditions for the DSOC mission:

• 2.7 AU Earth-Spacecraft distance

• Fully illuminated Earth background (0.0087 W/(cm2·sr·μm)) with a 1 nm bandpass filter

• Low beacon power at detector (~100 fW average power)

• 30% detector efficiency assuming 100% fill factor

• 10000 counts/second/pixel Dark counts and Stray light

• Centroid update rate 59.6 Hz (64 symbols integration time)

• 5 quarter frames blocking time.

Performance testing cont.
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• Using the 2.7 AU test case the uplink beacon centroid is calculated for various Y-position 

on a full Earth background (indicated by the arrow), using a 3x3 subwindow.

• Using the blocking compensated counts, the Y-centroid estimate shows a symmetric S-

curve (red dashed) which is easily corrected for (red solid).

• Without blocking compensation, the X- and Y-centroid estimates show significant 

asymmetry (blue dashed). This is due to the background dependence of the MSQ statistic 

resulting in a background dependent bias. This bias can not be corrected for (blue solid).

• The integration time here is 50x64 symbols (0.84s) to highlight bias instead of noise. 

Monte Carlo Centroid tests
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• The Monte Carlo code was used for 

a wide range of parametric studies

• Here the RSS error is shown as a 

function of the integration time

• (64 symbols nominal)

• The results for the blocking 

compensated counts follow the true 

counts with a small offset:

• The RSS error decreases with 

longer integration time.

• However, the RSS error for the non-

blocking compensated counts level 

out at ~0.1 pixels RSS error due to 

the limit imposed by bias error.

Monte Carlo Centroid tests cont. 

• 2.7 AU test case

• 2x2 centroiding subwindow

• S-curve correction applied

• No timing offset

• RSS = sqrt(RMSX
2 + RMSY

2)
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• In the laboratory test setup it is 

easier to move the Earth over a 

stationary uplink spot

• Here we show the X- and Y-

centroid estimates for two 

separate Earth sweeps, with, 

and without blocking 

compensation enabled.

• Signal and background levels 

are consistent with the 2.7AU 

test case.

• With blocking compensation 

enabled the centroid estimate 

jitter increases with the Earth 

present, but the mean position 

stays constant (no bias)

• Without blocking 

compensation, significant bias 

is apparent, as expected.

Laboratory Centroid test
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• Lacking an absolute beacon position reference, linear 

sweeps of the beacon spot over a uniform background at 

a constant rate gives a relative reference.

• A linear fit to the X and Y centroid estimates thus acts as 

the “true” position.

• X- and Y-centroid errors are 0.07 and 0.04 pixel RMS 

respectively over the entire sweep.

• In tracking mode we would choose to operate over a 4-

pixel crosshair where jitter is minimized.

Laboratory Centroid test cont.
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Summary

• Developed a blocking compensation model and implemented blocking 
compensation in PCC readout electronics (FPGA)

• Using Monte Carlo simulations and a laboratory test bed we showed that:

– Blocking breaks the background independence of the MSQ statistic, 
leading to significant centroiding errors (bias)

– Blocking compensated counts closely follow the True counts, with a 
small noise penalty associated with the discarding of data

– Using the blocking compensation, combined with S-curve correction, 
leads to centroid estimates that are linear with displacement and free of 
bias. 

– Uplink beacon centroid jitter is <1 μrad even under worst case dynamic 
conditions

– In Tracking mode, near 4 pixel crosshair, uplink beacon jitter is <0.5 μrad

• The blocking compensation algorithm degrades with timing offset

– Only matters in Acquisition mode where centroiding accuracy is 
secondary.
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Backup
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• Up-down counters alternately increment and decrement pixel counts at beacon 

frequency 

• The up-down counter (UDC) outputs U and V have mean and variance

where N is the number of beacon cycles,  is the slot timing offset, and Ts is the 

slot time. 

• Modified square law statistic                                     , where S is up-counts, enables 

signal detection without phase synchronization, and has expected value that does 

not depend upon background.

Up-down Counter Statistics

beacon signal intensity per pixeltiming offset ϵ

+ + - - + + - - + + - - + + - -

+ + - - + + - -+ + - - + + - --
2nd up-down counter V

1st up-down counter U

no dependence 

on background


